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APPENDIX I. Integrals for deriving moments
of F

Iy (az, 62) =
I (a8?) =
Given I find I,
Iy <a2, bz) = 7exp [— (a2x2 + bz/mz)} dz
0

_ _jexp [— <<12/u2 + 62u2)] (—du/u2)

where z = 1/u and dz = —du/u? so
a b2 7 bz$2+a2/m )]
0
= I (b2 2)
(A1) hence I_o (az,bg) =1 <b2,a2> = 2ﬁ|e—2labl

Iozo/exp[— (a2m2—|—b2/x2>} de = U-V :o—/OOOVdU

where U = exp[ - |, dV =dz, dU = (exp[ - |)(—2a%z +2b?273) and V = z so

O

:o - / (—2(129:2 + 262/302) exp [— (azg;z + b2/m2>] dx

0

Iy, = exp [—- (a2x2 + b2/m2)] T

= 2a%I (a%,b%) — 2°1_, (a%,b%)

Hence:

Iy (a®,%) = 20’1, (a?,0%) — 26°I_5 (a?,0%)



and I_5(a?,b%) = Ip(b?, a?) so substituting and solving for I, gives

Iy (a%,87) = 5 {0 (a2, 9°) + 2621, (32, 0%) )

Comments.

1. We can solve for all even n by using Ip, I and I3, and integration by
parts.

2. We can use the indefinite integral Jy corresponding to Iy, and the previous
methods, to solve for J_,, Jy, and then for all even n. Since

Iy (a2, bz) = Q\I/—j | e~ abl then
I, (62, a2> = 2\|/§|8_2|ab| and
1 V&3 NZ3
I 2 12 —_ 2 —2|ab]
2(a,b) 2a2{2|a|+2b2|b|}6

= Ly el 1215

I



APPENDIX II. Derivation of Formula (3.1)

This is based on a note from Howard Tucker. Any errors are mine.
*From the paper by Paranjape & Park, if X (¢) is standard Brownian motion,
ifa#0,b>0,

PX(t)<at+b,0<t<T|X(T)=s)

2
B 1~exp{—7?(aT+B—s)} ifs<al'+b
0if s > ol + B.

Write this as:
PX(t)<at+b0<t<T | X(T)) %3

= (1 - eap{~2b(aT + b — X(T))%} it X(T) < al +b.
Taking expectations of both sides of the above, we get

P(X(t)<at+b0<t<T)

aT+b
— (1 _ e—2b(aT+b—s)1/T) L_—s*/2T g,
— 00 2nT
]_ aT+b —2ab aT+b
= / e~ /2T g . © / e—(s=20)2/2T
VerT . V2rT .

Hence

(D) P(X going above line at + b during [0, T]) = 1 — previous probability

00 aT—b

1 2 1 2
—-s°/2T —2ab —u®/2T
= e ds + e T e du, whereu = s — 2b.
ok / 27T / ’

aT+b

Now, when a =0, b > 0,

P{sup X(t)>0b
0

<t<T

oo
_ 2 [ —v¥er
= TrT/e dv,
b



which agrees with a known formula (see, e.g., page 261 of Tucker [1967]).
When T — oo, since /T /T — 0 and VT = s.d.of X(T), the first integral
— 0, the second integral — 1, and P(X ever rises above lineat + b) = =2,

*The theorem it comes from is due to Sten Malmquist: On Certain Con-
fidence Countours for Distribution Functions, Ann. Math. Stat., 25 (1954),
pp 523-533. This theorem is stated in S.R. Paranjape and C. Park: Distri-
bution of the Supremum of the Two-Parameter Yeh-Wiener Process on the
Boundary, J. Appl. Prob. Vol. 10 (1973).

Letting &= av/T, B = b/\/T, formula I becomes

P() = N(-— o« =) + e *PN(x —f) where o, >0 or
(I) P(X(t)<at+b0<t<T)=1-P(-)=N(x+8) — e >’ N(x —)

for the probability the line is never surpassed. This follows from:

Io%)

l / — 2/2T l 70 _ 2/2
e/ ds = —— e %%z = N(— x =)
v/ V2
27TTaT+b Waﬁ+b/ﬁ
T-b
1 a
and

== / e‘“2/2Tdu:N(oc —B)
m —o0

where s = aT + b and = = s/v/T = av/T + b/v/T
and x=a Tandﬂ:b/\/T.

The formula becomes:

P(sup[X(t) —(at+0)] >0:0<t<T)

= N(=o—f) +e**N(cx —f)
= N(—~x-8)+e ™ Nx—-F) o,B>0

Observe that P(-) < N(— x =) + N(x =0)

= {1-N(x+0)} + N(cx =f)

x—p [e's)

= /oc(:r)dx—l— / x (z)dr < 1

—00 x+0

as it should be.



Appendix III. Expected time to reach goal

Reference: Handbook of Mathematical Functions, Abramowitz and Stegun,
Editors, N.B.S. Applied Math. Series 55, June 1964.
p.304, 7.4.33 gives with erfz = = I e~ dt the integral:

(1) /exp{—(a2z2+b2/a:2)}dm = g [e2aberf(ax +b/z) + e *%er f(ax — b/:c)] +C,

a # 0.
Now the left side is > 0 so for real a, we require a > 0 otherwise the right
side is < 0, a contradiction.

We also note that p.302, 7.4.3. gives

(2) /Ooo exp{—(at?® + b/t?)}dt = %\/ge—zm

with Ra > 0, ®b > 0.
To check (2) v. (1), suppose in (1) a > 0, b > 0 and find

lir% and lim of erf(az +b/z) and erf(azx — b/x)

a}ﬁr}r(am +b/x) = 400 g}i&(am —b/z) = —00
}Lrg(ax +b/z) = +o0 mh_,r{.lo(ax —b/z) = 400

(1) becomes

ge—mb ler f(00) — erf(—o0)] = ge‘zaerrf(oo)
\/_7_‘-6—2ab

2a

since we know erf(oo) = 1.
In (2) replace a by a?, b by b? to get

Io(a27b2) = /°° eXP{—(a2t2 + bz/tz)}dt — %T\/‘-ﬁle—zmm
0 :

which is the same.



Note: if we choose the lower limit of integration to be 0 in (1), then we can
find C"-

0
0 = [) exp{—(a*z? + b*/z?)}dz
= 1{—% [e2aberf(oo) + e‘zaberf(—oo)] +C
a
ﬁ 2ab —2ab
- E [6 — € ] + C
Whence

(3) F(z) = /Om exp{—(a®z® + b*/z*)}dzx

_ \i—f {ezab[erf(am +b/) — 1] + e 2er f(az — b/z) + 1]}

To see how (3) might have been discovered, differentiate:

F'(z) = exp{—(da’z’+b*/2%)}
= 'g{ezab(a — b/:c2)erf,(a:r + b/m) + 6—2ab(a + b/mz)erf’(a:c _ b/m)}

Now erf'(z) = 727-(-exp(-—z2) s0

erf'(ax +b/z) = % exp[—(az + b/z)?]
= —\/2-% exp{—(a2x2 + bz/:l?2 + 2ab)}

2
= e~ exp{—(a®z® + b*/z?)}

=

and, setting b <« —b,

erf'(ax — b/x) = —2—62“b exp{—(a®z? + b*/z%)}

NZ3

whence

Fla) = g{%m—w)+—};m+b/m2>}exp{—<a2w2+b2/xz>}

= 5%{2(1} exp{—(a®z® + b*/x?)}
= exp{—(a2932 + bz/x2)}



Case of interest: a < 0,56 >0

Expect:

b>0,a<0= F{T)71lasT — o0
b>0,a>0 = F(T)Tc<lasT — o
Ifb6>0,a=0:

F(T) = N(—=f) + N(-f) = 2N(=b/v/T) 1 2N(0) = 1asT T .

Also, as expected F(T) T1asb | 0.
Ifvb>0,a<0: See Below.
If6>0,a>0:

F(T) = N(—=aVT —b/VT)+e *®*N(aVT — b/\/T) — N(—00) 4 e 2% N(c0)

= e < lasT T 0. This is correct.

If b=0: F(T) = N(—a/T) 4+ N(av/T) = 1. This is correct.

Let F(T) = P(X(t) > at + bfor somet, 0 < t < T) which equals
N(— o« —f8) + e 2®N(ox —f) where oc= a+/T and 8 = b/y/T so ab =x S;
we assume b > 0 and a < 0 in which case 0 < F(T) < 1 and 7113»1;10 F(T) =

1 %irr%) F(T) = 0; F is a probability distribution function:

%in}) F(T) = N(—o00)+e 2 N(~o00) =0

lim F(T) = N(+00)+e 2*N(—c0) = 1.

T—00

The density function

f(T) = F(T)

0 / —2ab 0 1
= Fp(m X =HN(= o =f) + e o (< —=F)N'(ex ~f)

where 5 X ” 1
—OC — -1/2 e —3/2
ar 3 or ~ 20
1 2 2
N'(—x =f) = —=e (xtA/2 1 exp d — (a®*T + v*/T + 2ab)
\/ 27T Q/27T 2
1 1 2T + 12/T — 2ab
N(x-f) = e (x=B)?/2 _ exp | — (a*T + b%/ ab)
V2 vV 2m 2



_ L e 1 _3/2> 1 (a®T +5*/T)
THT) = T < 2aT + sz oral R —
! | 1 (a*T + b*/7T)
—2ab (2 -1/2 4 Zpp 3/2) ab _
+ Te <2aT + 2b \/_2—7;6 exp{ —
B e—ab (—aT+1/2 + bT—l/?) exp{— gazT—;bz [T)}
- 2V 2 +(aT+1/2 + bT"l/Z) exp{_.azL';bzm}

The expected time to the goal is

Eooz/oon(T)dT = beﬁab/ T2 exp { (2T+b2/T)}dT
0

2 2
TV? =g —ab 2 2
T =12 = 2be /OO - (_a_) 2 ._b_ -2
dT = 2zdzx } 21 Jo eXp ™2 ot 72 o dz
_ o 2e® (a ) (b
- Ver C\\WV2) WA

Now

2 2
a b ﬁ
Iy ([ —= — = —labl @
°((¢§> (ﬁ)) Sla|” e
—ab
E, = 2be VT "“b|-—£—,a<0 b > 0.

Vor V2 |a la|

—ab (2 2
F(T) = be_QWT'S/Qexp{ (a T; b /T)} >0

forall a, e.g. a < 0, so F(T') is monotone increasing. Hence, since 71im F(T) =

Note:

1, 0< F(T) < 1forall T so we have more confidence in using the formula
for a < 0 too.

Check: E.(a,b) | 0as | —0o yes
Eoo(a,b) T asb T yes



Eoo(a,b) T as [a|l  yes

note  lim FEo(a,b) = 400 as suspected
al0t

This leads us to believe that in a fair coin toss (fair means no drift) and
a gambler with finite capital, the expected time to ruin is infinite.

This is correct. Feller give D = z(a—z) as the duration of the game, where
z is initial capital, ruin is at 0, and a is the goal. Then lim D(a) = +o0.
NOTE: E,, = b/ | a | means the expected time is the same as the point
where aT' + b crosses X (t) = 0. See Figure 2.

EFew = b/]|al a=-—m/s? b= InA
A = (C/Xo = normalized goal
m = pln(l+ )+ qin(l— f) = g(f)
£ = pa{tal(l+ 1)/(1 - Y
Kelly fraction f* = p—q  g(f") = pln2p + qin2q
Form >0, E, = (In)\)s?/g(f)

2 variance

Now this is the expected time in variance units. However s
units = 1 trial so B I
o n n
n()\, f) = ) = =
s2 g(f) m

is the expected number of trials.

Checks: n(A, f) 7T asA T
n(A, f) » coas A — o©
n(A f) T asm |0
n(A, f) — ccasm — 0

Now g¢(f) has unique maximum at g(f*) where f* = p — ¢, the “Kelly
fraction,” therefore n(A, f) has a unique minimum for f = f*. Hence f*
reaches a fixed goal in least expected time in this, the continuous case, so we
must be asymptotically close to least expected time in the discrete case, which
this approximates increasing by well in the sense of the CLT (Central Limit
Theorem) and its special case, the normal approximation to the binomial
distribution. The difference here is the trials are asymmetric. The positive
and negative step sizes are unequal.
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